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AbstractÐSorting is a fundamental function in many applica-
tions from data processing to database systems. For high perfor-
mance, sorting-hardware based sorting designs are implemented
by conventional binary or emerging stochastic computing (SC)
approaches. Binary designs are fast and energy-efficient but costly
to implement. SC-based designs, on the other hand, are area
and power-efficient but slow and energy-hungry. So, the previous
studies of the hardware-based sorting further faced scalability
issues. In this work, we propose a novel scalable low-cost design
for implementing sorting networks. We borrow the concept of SC
for the area- and power efficiency but use weighted stochastic
bit-streams to address the high latency and energy consumption
issue of SC designs. A new lock and swap (LAS) unit is proposed
to sort weighted bit-streams. The LAS-based sorting network can
determine the result of comparing different input values early and
then map the inputs to the corresponding outputs based on shorter
weighted bit-streams. Experimental results show that the proposed
design approach achieves much better hardware scalability than
prior work. Especially, as increasing the number of inputs, the
proposed scheme can reduce the energy consumption by about
3.8% - 93% compared to prior binary and SC-based designs.

Index TermsÐSorting, Stochastic computing, Low cost

I. INTRODUCTION

Sorting [1], [2] is one of the fundamental tasks in computer

science. Sorting operations can be found in many applications

including database [3], data mining [4], image processing [5],

video encoding [6], etc. While most sorting algorithms are

realized in software, there is a growing number of real-time

applications that require a higher speed than what is offered by

generalized computer circuitry. For these instances specialized

circuitry is used. Hardware-based sorting networks are realized

with field-programmable gate arrays (FPGAs) or Application-

specific integrated circuit (ASIC) as a high-performance and

energy-efficient alternative to software-based sorting solutions.

While hardware-based sorting networks can provide signifi-

cant speed boosts over software solutions, they come with the

drawbacks of being large and power hungry. This is a major

problem for small embedded systems where signal and image

processing are often used. These systems have hard limits on

size and power making the implementation of sorting networks

impractical. Reducing the area and power consumption of

sorting networks is an important goal as it makes them viable

for a much wider range of applications.

A recent study [7], [8] reduced the area and power con-

sumption of the sorting networks by employing stochastic

computing (SC) [9], [10]. Stochastic computing is a technology

by using approximation to reduce the hardware cost in terms

of area and power consumption. SC has been used in many

fields including but not limited to artificial neural networks

and image processing [11]±[17]. SC-based sorting networks

are much more hardware-efficient than the sorting networks

implemented based on the traditional binary computing [2],

[18]. The hardware area and power cost reduces by more than

92% for a 256-input sorting network circuit [7]. However, SC-

based implementations suffer from a major drawback: signif-

icant increase in the latency and energy consumption. This

drawback comes from how inputs are represented and com-

pared. In traditional sorting networks, inputs are represented

and processed in positional binary format. However, in SC-

based networks inputs are represented using long stochastic bit-

streams. These bit-streams scale exponentially in length taking

many cycles to process. The long processing time leads to a

high total energy consumption even though the network uses

a lower continuous power than the traditional binary-based

sorting networks.

In this work, we propose a novel scheme called lock-and-

swap sorting network (LAS) by using weighted bit-streams.

The proposed technique takes advantage of the bit-stream

functionality of SC but keeps the binary weighting of traditional

binary computing. LAS uses swap and lock units to perform

comparison between weighted bit-streams inputs. LAS using

weighted bit-streams can decrease the latency from 2N cycles

required by SC-based sorting network to N cycles (where N
is the number of bit precision of the inputs). Finally, the LAS

scheme achieves much better scalability and significantly lower

hardware cost compared to the SC based and traditional binary

implementations.

The contributions of this paper are fourfold: I. We propose

a novel scalable low-cost design for implementing sorting

networks based on the weighted stochastic bit-streams. II. A

new lock and swap (LAS) unit is proposed to sort weighted

bit-streams. III. A weighted bit-stream generator is proposed

to generate SC based bit-streams for the sorting networks. IV.

The experimental results indicate that the proposed scheme has

much better hardware scalability than prior conventional binary

and stochastic computing based designs.

The reminder of this paper is organized as follows: Sec-

tion II discusses the background on sorting networks and SC.

Section III demonstrates the proposed sorting network design.

The synthesis results of different sorting network are reported

and compared in Section IV. Finally, conclusions are drawn in
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Fig. 1. 8-input Bitonic sorting network [2].
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Fig. 2. Example of a stochastic multiplication circuit.

Section V.

II. BACKGROUND

A. Stochastic Computing

Stochastic Computing (SC) [9], [10] is an unconventional

method of computing that operates over uniform random bit-

streams where data is represented by the ratio of 1’s to

the length of the bit-stream. This allows SC to represent

real numbers between 0 and 1. For example, 11101010 is

a representation for 5/8 in the stochastic domain. Repre-

senting numbers with higher precision than that of the pre-

vious example simply requires increasing the length of the

bit-stream. Implementing complex arithmetic circuits in the

stochastic domain can be done with very simple hardware.

Taking for example a multiplication circuit implementation,

in the traditional binary domain, this circuit would be very

complex and large, but in the stochastic domain, it can be

implemented with just an AND gate as shown in Figure 2. SC-

based implementations have achieved low-cost designs in many

areas including but not limited to artificial neural networks

and image processing [5], [11]±[13], [19]±[22]. The area-

and power-efficiency of SC designs comes from reduction in

the hardware complexity. To generate bit streams, stochastic

number generators (SNGs) [23]±[25] are needed to convert

binary data to bit streams with a uniform weight. However,

stochastic computing has a major drawback. Stochastic circuits

often have a long processing latency because long stochastic

bit-streams must be processed for acceptable accuracy. The

length of the bit-streams is exponentially proportional to the

data precision. Long latency directly translates to high energy

consumption. Even though SC-based implementations have

a lower power consumption than that of their conventional

binary counterparts, they take many more processing cycles

A
B
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N-Bit
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N-Bit  
Register 

N-Bit
Counter 
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Fig. 3. (a) Stochastic-based Compare and Swap (CAS). (b) Binary to stochastic
bit-stream converter.

such that they end up consuming more energy to complete the

computation or task. Moreover, improving the data precision

increases the latency and energy consumption exponentially

in SC-based implementations. In summary, SC-based designs

benefit from the low area and low power consumption due to

the simplicity of arithmetic operations but face extremely large

energy consumption, especially when the precision requirement

is high.

B. Bitonic Sorting Networks

Bitonic sorting is suggested for hardware-based sorting due

to its great scalability in term of number of comparators, M ∗
log2(M), with M being the number of inputs, as well as how

easy it is to parallelize in hardware. A Bitonic sorting network

is constructed recursively, as indicated in Figure 1. An M-bit

Bitonic sorting network is made up of two M/2-input Bitonic

sorting networks and each of those are made up of two M/4-

input networks and so on down to 2-input networks. Each non-

recursive block of the network is made of two different sub-

blocks referred to a merge block and a shift block. The merge

block compares the top input with the bottom input then the

2nd from the top input with the 2nd from the bottom input

and so on until all inputs are compared. The outputs of the

merge block are connected to the inputs of two shift blocks.

The shift block compares the top half of the block’s inputs with

the bottom half of the block’s inputs. The outputs of each of

the shift blocks are connected to two half sized shift blocks.

This recurses down until the shift blocks are two-input wide.

For both types of sub-blocks each input is only compared once.

This allows each sub-block to be parallelized into a single step.

Traditionally, sorting networks [2] are large parallel circuits

composed entirely of Compare And Swap (CAS) blocks. These

blocks take in two numbers and return the minimum and

maximum of the two inputs. A traditional binary CAS block

consists of an N-bit comparator and two N-bit multiplexers,

making the complexity of the block dependent on the precision

of the input numbers. The number and arrangement of CAS

blocks in a network is dependent on the sorting algorithm.

Therefore, the complexity of the network scales with the

number of inputs times the precision of the input numbers.
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Fig. 4. A overall view of sorting network implementation for the proposed
method.

To reduce the hardware cost, stochastic computing-based

sorting network implementations were proposed [7], [8]. In

a stochastic sorting network, the minimum and maximum

functions of the CAS block can be implemented by an OR

gate and an AND gate, respectively, as indicated in Figure 3(a).

This makes the complexity of the block extremely low and

independent of the data precision. However, SC design comes

with an additional overhead cost of converting between binary

and bit-stream formats. As shown in Figure 3(b), the binary

to stochastic converter consists of an N-bit counter, an N-

bit register and an N-bit comparator. The complexity of the

conversion circuitry is proportional to the number of inputs

and the precision of those inputs. For some SC designs, the

overhead of the bit-stream generators take more than 80% of

the total circuit design cost [26]. Another drawback of the

stochastic designs is that the bit streams are often processed

sequentially. So the number of cycles needed to complete the

sorting task must also be taken into account. For the stochastic

design, the number of cycles needed to sort N-bit precision

data is 2N . This limits the scalability of the SC design when it

comes to high precision numbers. For example, to sort 32-bit

numbers the SC-based sorting design takes 1032 cycles which

is not acceptable in all applications.

III. ALGORITHM DESIGN

This section describes the implementation of the proposed

design. As discussed in the previous section, sorting two N-bit

data with the stochastic approach takes 2N clock cycles. This

exponential increase in the processing time will significantly

outweigh any benefit from the decreased hardware complexity

for even a moderately high precision. The fundamental idea of

this work is to exploit the simple implementation of the SC

design while shortening the bit-stream by compressing it down

to a weighted binary format. By doing so, we can achieve both

a low hardware cost and a low latency for the sorting network

design. The length of the weighted bit-streams scales linearly

with the data precision making it feasible to process higher

precision inputs. As indicated in Figure 4, there are two major

parts in the proposed design. One is the bit-stream converter

which generates weighted bit-streams (Figure 5). The other is

the sorting design based on the proposed lock-and-swap (LAS)

unit as shown in Figure 6.

REG REG REG REG

Mux Mux Mux Mux

Binary Input

Binary Output

Bit-stream
Input 

Bit-stream
Output 

Reset

Fig. 5. An example of a 4-bit weighted bit-stream converter.
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Fig. 6. Proposed Lock and Swap (LAS) block.

A. Weighted Bit-stream Converter

The weighted bit-stream converter is used to generate

weighted bit-streams for the scalable sorting network imple-

mentation. Compared to the conventional bit-streams in SC,

each bit in the weighted bit-streams remains their weight as

the conventional binary value. By doing so, the number of

bits in SC can be shrinked from 2N to N for N-bit precision

representation. Therefore, the conversion from exponential to

linear can significantly reduce the energy consumption.

In the weighted bit-stream converter, both the binary input

and the output bit-stream are weighted the same. This allows us

to use much less complex hardware as indicated in Figure 4. To

convert between binary and bit-stream formats, a specialized

shift register is used. An example of a 4-bit weighted bit-

stream converter is shown in Figure 5. Both the conversions

from binary to weighted bit-streams and from weighted bit-

streams to binary are integrated in this converter. By doing so,

we eliminate the need for additional hardware to convert the

bit-streams back into binary format by looping the output of

the sorting network back into the same shift register. Reducing

the complexity of the bit-stream converter is important as it is

the largest unit of the design and the only component that its

complexity scales with the data precision.
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TABLE I
HARDWARE SYNTHESIS RESULT COMPARISON BETWEEN THE PROPOSED LAS AND PRIOR WORKS AT 100MHZ WITH 8-BIT PRECISION.

Number
of Inputs

Area (um2) Power (mW ) Energy (nJ)
Proposed Binary Stochastic Proposed Binary Stochastic Proposed Binary Stochastic

8 2351 5353 4457 0.19 0.44 0.34 0.015 0.004 0.88
16 6527 15419 9094 0.50 1.23 0.69 0.040 0.012 1.76
32 16826 39291 18690 1.26 3.34 1.39 0.101 0.033 3.56
64 41416 104235 36545 3.17 8.84 2.83 0.25 0.088 7.26
128 104520 282744 73103 9.95 22.5 5.49 0.79 0.22 14.07

B. LAS-based Sorting Network Implementation

In the proposed design, the bits towards the front of the bit-

stream will be more heavily weighted than the bits farther down

the stream. The comparison between two bit-streams is decided

when the first difference between two input streams is detected.

All bits after this point are irrelevant to the comparison as

the decision has already been made. This necessitates the use

of a CAS block that can lock its comparison state once the

comparison decision is made. This new CAS block will be

referred to as a Lock And Swap (LAS) block. Figure 6 shows

the proposed LAS block.

The LAS block has the same functionality as a CAS block. It

gets two inputs and returns the minimum and maximum value

between the two inputs. The block contains two registers: a

Lock register and a Swap register. The Lock register remembers

if the comparison decision is made earlier and prevents the LAS

from changing the swap states. The Swap register, on the other

hand, stores the swap state of the LAS when the comparison

decision is made and the LAS is locked. The next state of each

register is driven by its own set of combinational logic. The

Lock register is set when the inputs to the LAS differ. The

comparison is done at that point. Lock remains in this state

until a reset signal is received. The Swap register is set when

the inputs to the LAS block are in the swap condition and

the comparison decision is not made yet. In the LAS block of

Figure 6, the swap condition is when A < B. This is because

we want the top output to have the maximum value and the

bottom output the minimum value. If the outputs need to be

flipped, either the swap condition or the inputs to the LAS’

MUXs need to be changed. Since the circuit works with single-

bit inputs, A < B can be simply implemented by the Boolen

function Ā&B (i.e., one inverter plus one AND gate). The Swap

register remains set until a reset signal is received. The MUXs

at the output swap the input values when either the comparison

is completed with a swap state or the comparison is not yet

done but the inputs are at a swap condition. This is the same

condition as the next state signal of the Swap register, so the

same driver logic can be used.

In implementing the Bitonic sorting network, the LAS will be

the basic component for sorting each two inputs. In summary,

in our proposed LAS unit, the input A and B will be swap

based on their weighted bits. The larger value will be routed

to the top output and the smaller value will be routed to the

bottom output. The unit accomplishes the sorting task with a

low hardware cost and a short latency.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed design with two

baseline implementations: the SC-based design [7] and the

traditional binary design [27]. All designs are structured as a

Bitonic sorting network and have parallel binary inputs and out-

puts. We use the Synopsys design compiler with the FreePDK

45nm library [28] for hardware synthesis. We synthesize the

designs based on three scanrios: a fixed clock frequency of

100 MHz, a fixed clock frequency of 1 GHz for the pipelined

designs and, at each design’s maximum working frequency.

Unless stated otherwise, the number of inputs and the data

precision are 8 and 8-bit, respectively.

A. Overall Comparison

We compare the hardware cost of the three implemented

designs when varying the sorting networks size from 8 to 128.

Table I shows the synthesis result for different sorting network

designs. The input values to all three design approaches have

8-bit precision. From the results we can see that for 8-input

sorting network the proposed LAS-based design can achieve

up to 60% area reduction and 64% power reduction compared

to the binary and stochastic designs. This trend continues for

comparison between the proposed and the binary designs as

the conventional binary design is complex and power hungry.

However, this is not the case when comparing the proposed and

the stochastic design. There is a cross over point between the

sorting networks with 32 and 64 inputs where the stochastic

design becomes more space and power efficient than the pro-

posed design. This is due to the number of CAS / LAS blocks

in the network scaling faster than the number of bit-stream

converters. So any benefit gained from our design’s simplified

bit-stream converters would be surpassed by the downside of

the more costly LAS blocks.

The stochastic CAS block is simple. Hence, the increase

in the number of inputs has less impact on the power and

area compared to the binary design. However, from the en-

ergy perspective, the stochastic-based implementation has a

significantly higher energy consumption compared to our LAS

design as in the stochastic approach the energy is proportional

to the bit-stream length. As it can be seen, the proposed

design consumes up to 30× less energy than the stochastic

design. Compared to the binary implementation, even though

the proposed design consumes slightly higher energy, the power

and area costs are much lower. The proposed design approach

addresses the massive area and power issue of the binary

design as well as the excessive energy consumption of the
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TABLE II
HARDWARE SYNTHESIS RESULT COMPARISON BETWEEN THE PROPOSED LAS AND PRIOR WORKS AT THEIR MAX FREQUENCY WITH 8-BIT PRECISION.

Number
of Inputs

Area (um2) Power (mW ) Energy (nJ) MAX Frequency (MHz)
Proposed Binary Stochastic Proposed Binary Stochastic Proposed Binary Stochastic Proposed Binary Stochastic

8 2429 5846 4548 2.5227 4.1666 3.2652 0.0190 0.0061 0.7887 1,060 680 1,060
16 6291 16203 9307 6.2933 11.7363 6.7006 0.0475 0.0311 1.6198 1,059 378 1,059
32 17037 44141 19197 16.3046 32.0107 13.4619 0.1360 0.1242 3.3484 959 258 1,029
64 45021 114000 41069 41.2285 84.0915 26.9366 0.4617 0.4593 8.3046 714 183 830
128 112494 297265 85550 102.4888 216.8701 53.6658 1.5077 1.5646 21.4196 544 139 641

TABLE III
PIPELINED HARDWARE SYNTHESIS RESULT COMPARISON BETWEEN THE PROPOSED LAS AND PRIOR WORKS AT 1 GHZ WITH 8-BIT PRECISION.

Number
of Inputs

Area (um2) Power (mW ) Energy (nJ)
Proposed Binary Stochastic Proposed Binary Stochastic Proposed Binary Stochastic

8 2819 9098 6239 2.9954 8.4840 4.5415 0.0240 0.0085 1.1626
16 8401 28002 15309 8.0021 26.0618 10.9000 0.0640 0.0261 2.7904
32 22345 77925 33864 20.4106 73.9101 26.2431 0.1633 0.0739 6.7182
64 55135 212679 78327 51.5176 194.5134 64.1867 0.4121 0.1945 16.4318

128 138761 560570 184277 128.7045 498.9233 151.9539 1.0296 0.4989 38.9002

Fig. 7. Area results as scaling input precision.

stochastic design. This makes the proposed design optimal for

embedded applications such as edge computing devices with

renewable power resources like solar and wind, which have

limited hardware resources but are supplied with continuous

(though limited) power.

B. Scaling Data Precision

We also investigate the impact of changing data precision on

the hardware cost of the sorting network in terms of area, power

and energy consumption. The results are shown in Figures 7 and

8 and Table IV. The number of inputs is 8 in all three design

approaches. As shown, when increasing the data precision, the

proposed LAS scheme reduces the area by 28% - 77%, and

the power by 26% - 75% compared to the other two baseline

designs. The LAS is implemented with simple logic gates,

achieving less hardware cost than the binary implementations.

Also, compared to the stochastic implementation, LAS uses

much cheaper bit-stream converters. In term of energy, both

the LAS and the binary implementations consume significantly

lower energy than the stochastic implementation as the stochas-

tic design takes much more cycles to finish the sorting task.

The LAS consumes slightly higher energy than the binary

implementation as it needs N cycles to finish the sorting task

where N is the number of bit precision of the data.

Fig. 8. Power results as scaling input precision.

TABLE IV
ENERGY CONSUMPTION COMPARISON OF THE SORTING DESIGNS FOR

8-INPUT SORTING.

Precision
(data-bits)

Energy (J)
LAS Binary Stochastic

8 1.58E-11 4.44E-12 8.82E-10
16 4.89E-11 9.61E-12 4.31E-07
32 1.68E-10 2.03E-11 5.54E-02
64 6.21E-10 3.90E-11 4.70E+08

C. Max Frequency Results

Table II reports the maximum working frequency of each

sorting design and the corresponding hardware costs. From

the reported results we can see that the proposed design can

achieve up to 118.6% higher maximum frequency than the

binary design and have comparable maximum frequency to the

stochastic design. For the 8 and 16 input design, the proposed

design has up to 60.7% and 25.7% lower area and power

consumption, respectively, compared to the stochastic design.

However, for the 32-input sorting the proposed design gets

beat out by the stochastic design in terms of area and power

but remains much more efficient than the binary design. More

notably is the energy results. As can be seen in Table II, for

128-input sorting the proposed design achieves a 3.7% decrease

in total energy consumption compared to the binary design.

For larger sorting network sizes, the proposed design similarly
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provides a significantly lower area and power consumption

and also a lower energy consumption compared to the binary

counterpart.

D. Pipelined Results

From the reported results in Table III, we can see that the

proposed design can achieve 69.0% area and 64.7% power

reduction when compared to the binary design. When compared

to the stochastic design, the proposed design reports a reduction

in area and power up to 54.8% and 34.0% respectively. These

results remain comparatively similar with an increasing number

of inputs.

V. CONCLUSION

In this work, we propose a novel scalable, low-cost sorting

network design. We borrow the concept of stochastic computing

but use weighted bit-streams to significantly reduce the number

of processing cycles. A new lock and swap (LAS) unit is

proposed to sort weighted bit-stream inputs. The weighted bit

streams can significantly decrease the latency compared to the

stochastic implementation. Also, the bit-stream operations use

simple logic gates which reduce the hardware cost in terms

of area and power compared to the binary implementation.

Experimental results show that the proposed design approach

achieves much better hardware scalability than prior work.

Especially, as increasing the number of inputs, the proposed

scheme can reduce the energy consumption by about 3.8% -

93% compared to prior binary and SC based designs.
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